首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102330篇
  免费   18959篇
  国内免费   10956篇
化学   70053篇
晶体学   1007篇
力学   6899篇
综合类   684篇
数学   12169篇
物理学   41433篇
  2024年   119篇
  2023年   2231篇
  2022年   2318篇
  2021年   3257篇
  2020年   4401篇
  2019年   3997篇
  2018年   3589篇
  2017年   3183篇
  2016年   5130篇
  2015年   4861篇
  2014年   5923篇
  2013年   7672篇
  2012年   9381篇
  2011年   9903篇
  2010年   6525篇
  2009年   6352篇
  2008年   6765篇
  2007年   5998篇
  2006年   5698篇
  2005年   4590篇
  2004年   3629篇
  2003年   2766篇
  2002年   2423篇
  2001年   2160篇
  2000年   1907篇
  1999年   2136篇
  1998年   1846篇
  1997年   1800篇
  1996年   1805篇
  1995年   1581篇
  1994年   1410篇
  1993年   1195篇
  1992年   1063篇
  1991年   959篇
  1990年   790篇
  1989年   637篇
  1988年   450篇
  1987年   389篇
  1986年   380篇
  1985年   324篇
  1984年   181篇
  1983年   154篇
  1982年   135篇
  1981年   77篇
  1980年   56篇
  1979年   18篇
  1977年   5篇
  1975年   6篇
  1969年   4篇
  1957年   38篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Artificial humic acids (A‐HA) made from biomass in a hydrothermal process turn otherwise highly insoluble phosphates (e.g. iron phosphate as a model) into highly available phosphorus, which contributes to the fertility of soils and the coupled plant growth. A detailed electron microscopy study revealed etching of the primary iron phosphate crystals by the ‐COOH and phenolic groups of humic acids, but also illustrated the importance of the redox properties of humic matter on the nanoscale. The combined effects result in the formation of then bioavailable phosphate nanoparticles stabilized by humic matter. Typical agricultural chemical tests indicate that the content of total P and directly plant‐available P improved largely. Comparative pot planting experiments before and after treatment of phosphates with A‐HA demonstrate significantly enhanced plant growth, as quantified in higher aboveground and belowground plant biomass.  相似文献   
102.
The fundamental understanding of the subtle interactions between molecules and plasmons is of great significance for the development of plasmon‐enhanced spectroscopy (PES) techniques with ultrahigh sensitivity. However, this information has been elusive due to the complex mechanisms and difficulty in reliably constructing and precisely controlling interactions in well‐defined plasmonic systems. Herein, the interactions in plasmonic nanocavities of film‐coupled metallic nanocubes (NCs) are investigated. Through engineering the spacer layer, molecule–plasmon interactions were precisely controlled and resolved within 2 nm. Efficient energy exchange interactions between the NCs and the surface within the 1–2 nm range are demonstrated. Additionally, optical dressed molecular excited states with a huge Lamb shift of ≈7 meV at the single‐molecule (SM) level were observed. This work provides a basis for understanding the underlying molecule–plasmon interaction, paving the way for fully manipulating light–matter interactions at the nanoscale.  相似文献   
103.
Two‐dimensional (2D) PtSe2 shows the most prominent layer‐dependent electrical properties among various 2D materials and high catalytic activity for hydrogen evolution reaction (HER), and therefore, it is an ideal material for exploring the structure–activity correlations in 2D systems. Here, starting with the synthesis of single‐crystalline 2D PtSe2 with a controlled number of layers and probing the HER catalytic activity of individual flakes in micro electrochemical cells, we investigated the layer‐dependent HER catalytic activity of 2D PtSe2 from both theoretical and experimental perspectives. We clearly demonstrated how the number of layers affects the number of active sites, the electronic structures, and electrical properties of 2D PtSe2 flakes and thus alters their catalytic performance for HER. Our results also highlight the importance of efficient electron transfer in achieving optimum activity for ultrathin electrocatalysts. Our studies greatly enrich our understanding of the structure–activity correlations for 2D catalysts and provide new insight for the design and synthesis of ultrathin catalysts with high activity.  相似文献   
104.
A novel luminescent metal–organic framework ( Zn‐TCPP/BPY ) with pillared structure based on 2,3,5,6‐tetrakis(4‐carboxyphenyl)pyrazine (H4TCPP) and 4,4′‐bipyridine (BPY) has been designed and synthesized through a solvothermal reaction. The [Zn2(COO)4] paddlewheel units are linked by TCPP4? ligands to form two‐dimensional layers and further connected by BPY ligands as pillars to construct the twofold interpenetrating three‐dimensional framework. Interestingly, Zn‐TCPP/BPY possesses outstanding stability in organic solvents and water as well as maintains its structural rigidity in aqueous solutions of different pH values (3–12). After activation, Zn‐TCPP/BPY possesses permanent porosity with Brunauer–Emmett–Teller surface area of 630 m2 g–1. Remarkably, Zn‐TCPP/BPY displays excellent fluorescent property in virtue of the aggregation‐induced emission effect of the H4TCPP ligand, which can be highly active and quenched by small amounts of 2,4,6‐trinitrophenol (TNP) and Fe3+ ions. Furthermore, the detection effect of Zn‐TCPP/BPY remains basically the same even after five cycles. The excellent stability, high sensitivity, and recyclability of Zn‐TCPP/BPY make it an outstanding chemical sensor for detecting TNP and Fe3+ ions.  相似文献   
105.
Alum‐processing is a traditional method to attenuate the toxicity of Pinelliae Rhizoma (tubers of Pinellia ternate, PT). The present study aimed at investigating the chemical and cytotoxic changes during alum processing. Metabolomic profiles of raw and alum‐processed PT were studied based on ultra‐performance liquid chromatography coupled with Orbitrap mass spectrometry. More than 80 chemicals in positive MS mode and 40 chemicals in negative MS mode, such as organic acids, amino acids, glucosides and nucleosides, were identified after multivariate statistical analysis, including principal component analysis and orthogonal partial least‐square discriminant analysis. Almost all of the identified chemical markers were significantly decreased ~10‐ to 100‐fold after alum processing. Meanwhile, the correlations between the chemical markers were assimilated to a positive coefficient from disorderly distribution during the processing. Raw PT extracts could inhibit the proliferation of human carcinoma cells (HCT‐116, HepG2, and A549) at the rate of 40.5, 24.8 and 31.6% more strongly than processed PT. It was concluded that the alum processing of PT could decrease the number of actively water‐soluble principles at the same time as decreasing toxicity. Given the water‐insoluble property of toxic calcium oxalate raphides in PT, we suggest that a more scientific processing method should be sought.  相似文献   
106.
Hydrogenation of acetophenone over nano‐Cu/SiO2 catalysts was investigated. The catalysts, prepared by a liquid precipitation method using various precipitating agents, were characterized using low‐temperature nitrogen adsorption, X‐ray diffraction, temperature‐programmed desorption of ammonia, hydrogen temperature‐programmed reduction, transmission electron microscopy and X‐ray photoelectron spectroscopy. It was found that the catalysts prepared by a homogeneous precipitation method had better activity and stability than those prepared by a co‐precipitation method. The catalyst prepared using urea as precipitating agent had well‐dispersed copper species, high surface area and abundant pore structure. The catalytic performance and mechanism of the Cu/SiO2 catalysts were further studied. It was found that the activity and stability of the catalysts could be improved by adjusting the proportion of Cu+/(Cu+ + Cu0). The sample prepared using urea as precipitating agent presented higher activity and selectivity. Also, the catalyst prepared using urea maintained a high catalytic performance while being continuously used for 150 h under the optimal reaction conditions.  相似文献   
107.
New multifunctional materials with both high structural and gas barrier performances are important for a range of applications. Herein we present a one‐step mechanochemical process to prepare molybdenum disulfide (MoS2) nanosheets with hydroxy functional groups that can simultaneously improve mechanical strength, thermal conductivity, and gas permittivity of a polymer composite. By homogeneously incorporating these functionalized MoS2 nanosheets at low loading of less than 1 vol %, a poly(vinyl alcohol) (PVA) polymer exhibits elongation at break of 154%, toughness of 82 MJ/m3, and in‐plane thermal conductivity of 2.31 W/m K. Furthermore, this composite exhibits significant gas barrier performance, reducing the permeability of helium by 95%. Under fire condition, the MoS2 nanosheets form thermally stable char, thus enhancing the material's resistance to fire. Hydrogen bonding has been identified as the main interaction mechanism between the nanofillers and the polymer matrix. The present results suggest that the PVA composite reinforced with 2D layered nanomaterial offers great potentials in packaging and fire retardant applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 406–414  相似文献   
108.
By employing planar thieno[3,2‐b]thiophene (TT) as end‐capped units and famous 3,4‐ethylenedioxythiophene (EDOT) or its all‐sulfur analog 3,4‐ethylenedithiathiophene (EDTT) as cores, two conjugated oligomer, TT‐EDOT‐TT and TT‐EDTT‐TT, have been synthesized and electropolymerized into electrochromic polymer films, P(TT‐EDOT‐TT) and P(TT‐EDTT‐TT), respectively. Due to strongly noncovalent inter/intramolecular interactions from S? S attraction of TT‐EDTT‐TT, it has twisted molecular configuration in contrast to planar TT‐EDOT‐TT. Spectroscopic, electrochemical, morphological as well as theoretical calculation studies of these oligomers or polymers were carried out to reveal the significant influence of such molecular geometry on their physicochemical and optoelectronic properties. According to electrochromic kinetics, P(TT‐EDTT‐TT) presented preferable electrochromic behavior such as the higher optical contrast (70.8%), favorable coloration efficiency (331.3 cm2 C?1) and fast response time (0.72 s). This research will help us deeply understand the effect of spatial organization of precursor molecules on the properties of electrochromic polymers and provides a promising strategy to develop high‐performance electrochromic materials. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 1041–1048  相似文献   
109.
Aequationes mathematicae - In this paper we study estimation, continuous dependence and Hyers–Ulam stability for continuous solutions of a second order iterative equation. First we give an...  相似文献   
110.
Luminescent seven-coordinated zirconium and hafnium complexes bearing three mono-anionic 2,2′-pyridylpyrrolide ligands and one chloride were synthesized. Solid-state structures and the dynamic behaviors in solution were probed by X-ray crystallography and variable temperature 1H NMR experiments, respectively. Absorption spectroscopy and time-dependent density functional theory (TD-DFT) calculations supported a hybrid of ligand-to-metal charge transfer (LMCT)/ligand-to-ligand charge transfer (LLCT) for the visible light absorption band. The complexes (MePMPMe)3MCl (M=Zr, Hf, MePMPMe=3,5-dimethyl-2-(2-pyridyl)pyrrolide) are emissive in solution at room temperature upon irradiation with visible light due to a combination of phosphorescence and fluorescence characterized by excited state lifetimes in the μs and low to sub-ns timescale, respectively. Electrochemical experiments revealed that the zirconium complex possesses a reversible redox event under highly reducing condition (−2.29 V vs. Fc+/0).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号